منابع مشابه
ar X iv : m at h / 06 03 73 3 v 2 [ m at h . A C ] 1 9 Ju n 20 06 RIGID COMPLEXES VIA DG ALGEBRAS
Let A be a commutative ring, B a commutative A-algebra and M a complex of B-modules. We begin by constructing the square SqB/A M , which is also a complex of B-modules. The squaring operation is a quadratic functor, and its construction requires differential graded (DG) algebras. If there exists an isomorphism ρ : M ≃ −→ SqB/A M then the pair (M,ρ) is called a rigid complex over B relative to A...
متن کاملRIGID DUALIZING COMPLEXES
Let $X$ be a sufficiently nice scheme. We survey some recent progress on dualizing complexes. It turns out that a complex in $kinj X$ is dualizing if and only if tensor product with it induces an equivalence of categories from Murfet's new category $kmpr X$ to the category $kinj X$. In these terms, it becomes interesting to wonder how to glue such equivalences.
متن کاملHomotopy Dg Algebras Induce Homotopy Bv Algebras
Let TA denote the space underlying the tensor algebra of a vector space A. In this short note, we show that if A is a differential graded algebra, then TA is a differential BatalinVilkovisky algebra. Moreover, if A is an A∞ algebra, then TA is a commutative BV∞ algebra. 1. Main Statement Let (A, dA) be a complex over a commutative ring R. Our convention is that dA is of degree +1. The space TA ...
متن کاملDuality for Cochain Dg Algebras
This paper develops a duality theory for connected cochain DG algebras, with particular emphasis on the non-commutative aspects. One of the main items is a dualizing DG module which induces a duality between the derived categories of DG left-modules and DG right-modules with finitely generated cohomology. As an application, it is proved that if the canonical module A/A has a semi-free resolutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2008
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-08-04465-6